欢迎访问冉丘(上海)技术有限公司:硬度计、试验机、显微镜、影像测量仪、金相制样设备___联系我们吧021-57525860/13162862074/

布氏硬度计 | 维氏硬度计 | 金相切割机

产品分类
新闻中心 NEWS CENTER
首页 > 新闻中心 > 新闻中心

小分子、大分子药物生物分析及表征技术进展

本站文字和内容版权冉丘(上海)技术有限公司版权所有http://www.cnranqiu.com;转载请注明出处

< 返回上一页

  结构确认、生物分析、表征和质量控制方法等的研究是药物研发过程中的重要环节,这些研究必须尽可能准确、灵敏且具有选择性。在过去30年里,液相色谱和串联质谱(LC-MS-MS)技术一直是许多小分子药物分析的首选方法。在此期间,分析技术的高速发展为灵敏、可靠方法的开发提供了支持。但是当前制药/生物制药行业仍然渴求更强大的工具和更多样的方法,尤其是在市场上出现越来越多的大分子治疗药物的情况下。本文讨论了目前小分子及大分子药物生物分析过程中的问题,以及分析方法开发中的新趋势等。

  液相色谱-质谱联用技术从上世纪90年代起即广泛应用于药物发现和研发实验室,因为这种技术有能力在含有成百上千种其他物质的样品中快速识别和量化低浓度化合物。LC-MS-MS技术在小分子药物的结构分析、ADME及生物分析研究中尤为重要。在化合物浓度不断降低的情况下,这项应用的难度在于对方法精确性和重现性的高标准要求。近年来,生物药物的发展非常迅速,这些大分子药物的分析也面临着一系列挑战,同时也推动了技术和方法的新进展。

  小分子药物生物分析

  几十年来,药物开发人员一直在样本收集过程中使用生物分析手段来测定给定样本中药物的准确浓度。这些研究的准确性取决于分析方法以及实验室分析仪器的可靠性,所使用的方法及仪器应能够选择性、特异性地量化目标化合物。由于生物分析样本(如血浆、血液和其他复杂的基质)中经常含有高含量结构相关或非相关化合物,这一分析一直特别具有挑战性。这些因可能会导致亲缘试剂或其他不相关化合物共洗脱的交叉反应会影响实验的准确性和重现性。

  多年来,为了应对这些挑战,人们开发了很多基于LC-MS-MS的方法,改善了药物定量实验的灵敏度、通量、准确性和重现性。一种常用的方法是在三重四级杆质谱系统中使用多重反应监测(MRM)技术来降低噪声,同时提高量化的选择性与准确性。最近这种方法已经扩展至MRM3技术,通过增加碎片化步骤而改善选择性。如今,三重四级杆质谱系统已被用于开发浓度低至pg/ mL的小分子药物的检测方法,且具有良好的重现性、线性范围和信噪比。

  由于基质干扰,某些化合物在生物样品中特别难以分离,这可能会导致出现未分辨的峰或基线噪音过高,从而影响数据重现性、准确性和动态范围。通常,这这类问题可以是通过额外的样本处理过程或使用速度较慢的色谱来解决。然而,由于样品通量所带来的压力,这样的解决方式会为大多数药物开发实验室增加额外的时间、金钱和劳动力成本。过去的几年内,出现了有效的替代技术,即将离子迁移谱与LC-MS技术相结合,从而提高选择性。它可以以离子迁移装置的形式连接到TOF或者三重四级杆质谱的前端,或者也可以直接内置在TOF质谱系统内,但这种方法大都无法满足生物分析实验中速度、选择性和耐用性之间的平衡。最近,在分析的LC和MS阶段之间,已经开发出了多种不同的离子迁移分离装置。这些使离子根据迁移轨迹的不同而分开,而不是根据时间而分离,这样就去除了背景化合物的影响,从而提供了一个耗费更短MRM周期时间的系统,以便快速准确地检测复杂基质中的低浓度化合物。

  目前,越来越多生物分析实验室采用基于微流LC的方法来分析低浓度水平的化合物。这项技术使用更小的色谱柱(直径小于1mm)和电极,以获得更快速、更灵敏以及更高分辨率的结果,同时将柱后分散降到最低。较低的流速也提高了电离效率、减少了离子抑制,同时大大降低了样品及溶剂的使用量,为制药开发过程带来了经济和环保方面的优势。微流LC所需要的样品体积较低,这也恰好符合制药行业在采用显微取样技术进行毒物学和生物分析研究等方面的需求。此外,微流LC还可以结合不同离子迁移质谱,从而灵敏地对生物样品中的化合物进行选择性分析。

  大分子药物生物分析

  生物分析方法的准确性、耐用性和重现性仍然是药物研发人员以及监管部门所关注的关键问题。然而,传统的用于小分子药物生物分析的LC-MS方法通常并不适用于研究大分子药物,如抗体、生长因子、寡核苷酸和重组肽等。这些分子具有更大的尺寸以及复杂性,这就意味着在分析它们之前通常需要大量的样品制备过程,且它们的吸附特性以及背景蛋白的干扰会进一步影响定量的准确性。

  LC-MS-MS方法经过优化后可直接分析10kDa以下的小肽;而在定量分析之前,通常需要应用免疫反应介导的样本提取和/或样品富集步骤来增强选择性。而对于更大的蛋白质,通常需要更复杂的工作流程,包括在使用LC-MS方法对代表性肽进行分析之前的蛋白质水解。这种间接分析的方法被实验人员广泛采用,但却非常复杂,并会受到诸如可变肽释放等的影响。此外,监管部门也还尚未对这些方法的验证方法发布指导原则。

  如ELISA等的配体结合分析(LBAs)方法是一种成熟的蛋白质定量技术,且对于生物分析来说,它们的优势还在于其有能力同时检测人体循环中的游离药物以及药物的活性结构。然而,LBAs方法也有许多局限性,影响了它们在高通量药物开发中的应用。在最近的一项研究中,研究人员已经开始将LBAs方法与LC-MS方法结合起来。这些方法上的进展得益于三重四级杆及QTRAP质谱系统等技术的改进,包括灵敏度的提高,即可在低至毫克至微克的水平上检测大分子。这些新技术改善了电离与采样效率,增加了动态范围和可切换质量范围,而且允许不同质量的离子通过探测器。因此才开发除了很多经过验证的方法用以测定各类具有分析难度的药物,如细胞因子抑制剂、阿达木单抗、升糖激素、胰高血糖素、胰岛素类似物、胰岛素以及如用于自身免疫性疾病的英夫利昔以及用于乳腺癌的曲妥珠单抗等的抗体治疗药物。

  大分子表征

  多数大分子药物在生产过程中容易发生序列改变和生物转化不一致的现象。这些改变对于药物的有效性、生物利用度和安全性都会造成影响。因此,药物分析实验室会定期进行蛋白质的表征研究,以监测序列降解和转录后修饰,如氨基酸的改变和糖基化。这些研究通常采用LBAs或毛细管电泳(CE)技术。CE技术是一种强大的、耐用的方法,但在完整的表征过程中却非常耗费人力和时间,特别是在处理复杂药物如抗体药物偶联物(ADC)时,其表征可能需要不同分析方法的反复运行以及复杂的数据处理过程。

  近年来,技术的进展引发了几种蛋白质表征方法的改进。另外,CE技术与电喷雾离子化技术(CESI)的整合也促使了CESI-MS技术的发展,大大加速与简化了蛋白质分析。将CE技术的高分离效率与纳流LC结合,能最大限度地提高电离效率,并减少离子抑制。CESI-MS系统采用开管毛细管,最大限度地减少了死体积,从而提高了灵敏度和峰值效率。同时由于没有固定相,也避免了肽的丢失或过度保留。在最近的一个案例中,在使用单一蛋白酶消化后应用CESI–MS方法的单次运行之后,抗乳腺癌药物曲妥珠单抗被完全表征。该方法包含了100%的序列,而且鉴别了几个关键的氨基酸修饰;在同一分离中还完成了完整的糖肽分析。

  生物转化如脱酰胺、氧化以及结构的改变是LBAs等的传统方法所面临的挑战。曲妥珠单抗结构中的一个关键位置在体内会发生脱酰胺作用,而在经过验证的ELISA方法中并无法识别这种脱酰胺现象。人们最近开了一种LC-MS-MS方法来定量监测这种生物转化作用,采用胰蛋白酶消化的方法,使用选择反应监测(SRM)对特征肽进行定量。实验结果表明,该方法能同时有效地定量分析脱酰胺信号敏感肽及其脱酰胺产物。

  结论

  成功的药物开发及药物安全性研究依赖于大分子药物在研发或表征过程中某些步骤,及一系列相关分析测试过程。这些分析方法的准确性和重现性对工业界以及患者来说是非常重要的。多年来,由于激烈的竞争形势以及制药行业严格的监管特性,我们看到了分析技术的持续发展。尤其是近年来仪器本身及方法开发上的一系列进展,帮助人们开发了很多全新的治疗药物及更加复杂的化合物。在未来,这些研究还将需要更多快速的、选择性强的和精准的分析方法。

  注:本文为仪器信息网翻译,原标题为“Trends and Challenges for Bioanalysis and Characterization of Small and Large Molecule Drugs”,作者为SCIEX全球制药/生物制药高级市场经理Suma Ramagiri博士。



品质保证无忧售后技术支持制造技术

©2019-2020 冉丘(上海)技术有限公司版权 中国(上海)自由贸易试验区临港新片区老芦公路536号 沪ICP备18041578号-1

服务热线

13162862074

021-57525860

微信服务号